電力負荷預測應用圖
圖6-2給出了斯洛伐克東部電力公司全部730天的每天中每半個小時的電力負荷數據。由圖6-2可以看出,電力負荷數據在年份上也表現出明顯的周期性,730天的數據正好是兩個周期。圖6-3給出了每天的電力負荷曲線,為了比較清晰地表示該曲線,截取其中50天的負荷數據。從圖6-3可以看出,電力負荷的數據呈現出明顯的周期性,周期是以一個星期為單位的。另外,對于數據分析發(fā)現負荷序列還是一個以24h為周期的一個時間序列。圖6-4 為截取的序列中連續(xù)6天的負荷數據。從圖6-4可以看出,該序列明顯的呈現周期性,并且周期為24h。綜上分析可以看出,負荷序列呈現出多周期性,這樣的多周期性特征可以很好地輔助多尺度的預測,但是針對按天負荷預測以及按小時的短期負荷預測,目前還沒有將這種周期性考慮進負荷預測的模型出現。
圖6-2 兩年的電力負荷三維圖
電力負荷序列從數據特征上有明顯的周期性。數據的周期性特性對于序列預測是一個重要的輔助特性。為了有效利用序列的周期性特征來提高預測的準確性,利用一種周期性截斷灰色系統(tǒng)來對電力負荷進行預測。該方法通過周期截斷累加生成操作實現序列的累加,實現序列周期性特征的表達。并且采用該方法后,時間上最近的一個周期對預測結果的影響最大,也符合實際的序列預測分析。
圖6-3 每天的電力負荷曲線
圖6-4 每半小時的電力負荷示例曲線
為了將所用模型與其他方法作比較,采用歸一化均方誤差(NMSE)和絕對平均誤差(MAPE)作為誤差準則,歸一化均方誤差定義為:
式中:yi是原數據; 是預測數據;M代表預測點的數量。
另一個測量法稱為絕對平均誤差(MAPE)。絕對平均誤差被視為標準的統(tǒng)計性能指標之一
為了證明方法的有效性,將所提方法的結果與傳統(tǒng)神經網絡(ANN),自回歸模型(AR),極限學習機模型(ELM)以及灰色系統(tǒng)G(1,1)模型做對比,進行了兩個尺度的電力負荷預測,一個是以天為單位,一個是以半小時為單位。圖6-5給出了幾種不同方法的按天負荷預測結果,為了更好地展示預測結果,截取了其中2個周期進行顯示。在這個測試中,預測第651--730天的負荷。以按天負荷預測時,選取的截斷周期為7天。ANN以及ELM的輸入也為預測數據的前7個數據,AR的擬合也是由預測數據的前7個負荷數據進行的。但是由于ANN以及ELM的訓練只是整個樣本集上的擬合,因此周期性很難被直接利用。而AR本身是對所有數據集的整體擬合,周期性也很難利用。從圖6-5可以看出,該方法在按天負荷預測方面比其他幾種方法準確度更高。幾種方法具體的預測誤差見表6-1。可以看出利用了周期性特征以后,預測結果明顯要好于其他方法。AR由于本身線性擬合的缺陷導致預測結果最差。GM(1,1)由于沒有周期性截斷,導致累加數據過長,嚴重影響了預測精度。ANN和ELM有很好的非線性擬合能力,因此結果比AR和GM(1,1)要優(yōu)。由于ELM學習的時候是全局最優(yōu)的,而ANN有時容易陷入局部最優(yōu),因此ELM的預測精度比ANN略高。
圖6-5 不同方法的按天負荷預測對比
表6-1 不同方法的按天負荷預測對比結果
圖6-6給出了幾種不同方法的按半小時負荷預測結果,為了更好地展示預測結果,截取其中1個周期進行顯示。在這個測試中,預測最后4天的數據。以按半小時負荷預測時,選取的截斷周期為24h。ANN以及ELM的輸入也為預測數據的前48個數據,AR的擬合也是由預測數據的前48個負荷數據進行的。從圖6-6可以看出,考慮周期性的方法預測擬合效果要優(yōu)于其他方法。表6-2給出了幾種方法的具體預測結果對比。
圖6-6 不同方法的按半小時負荷預測對比
表6-2 不同方法的按半小時負荷預測對比結果
電力負荷的預測對電力系統(tǒng)調度和電力生產計劃制訂有著重要影響。電力負荷時間序列有著明顯的周期性特征。但是目前所有的模型只是從數據本身進行建模分析,都沒有很好地利用電力負荷序列的周期性特性。而數據的周期性特性對于序列預測而言是一個重要的輔助特性。為了能進一步提高負荷預測的準確性及穩(wěn)定性,提出一種周期性截斷灰色系統(tǒng)來對電力負荷進行預測。該方法改變了傳統(tǒng)的灰色系統(tǒng)的累加方式,通過周期截斷累加生成操作實現序列的累加,并且利用一個修正參數來提高預測的準確性和可靠性。該模型有效地利用了序列的周期性特性,提高了預測的準確性及可靠性。通過兩個實際負荷序列的測試表明考慮周期性的方法比傳統(tǒng)的神經網絡、極限學習機、自回歸模型以及傳統(tǒng)的灰色系統(tǒng)模型準確度更高。

責任編輯:蔣桂云
-
權威發(fā)布 | 新能源汽車產業(yè)頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業(yè),設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務,新能源消納,能源互聯(lián)網
-
新基建助推 數據中心建設將迎爆發(fā)期
2020-06-16數據中心,能源互聯(lián)網,電力新基建 -
泛在電力物聯(lián)網建設下看電網企業(yè)數據變現之路
2019-11-12泛在電力物聯(lián)網 -
泛在電力物聯(lián)網建設典型實踐案例
2019-10-15泛在電力物聯(lián)網案例
-
新基建之充電樁“火”了 想進這個行業(yè)要“心里有底”
2020-06-16充電樁,充電基礎設施,電力新基建 -
燃料電池汽車駛入尋常百姓家還要多久?
-
備戰(zhàn)全面電動化 多部委及央企“定調”充電樁配套節(jié)奏
-
權威發(fā)布 | 新能源汽車產業(yè)頂層設計落地:鼓勵“光儲充放”,有序推進氫燃料供給體系建設
2020-11-03新能源,汽車,產業(yè),設計 -
中國自主研制的“人造太陽”重力支撐設備正式啟運
2020-09-14核聚變,ITER,核電 -
能源革命和電改政策紅利將長期助力儲能行業(yè)發(fā)展
-
探索 | 既耗能又可供能的數據中心 打造融合型綜合能源系統(tǒng)
2020-06-16綜合能源服務,新能源消納,能源互聯(lián)網 -
5G新基建助力智能電網發(fā)展
2020-06-125G,智能電網,配電網 -
從智能電網到智能城市